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Introduction

Estimating a static coefficient for a deseasoned gas storage or weather
variable implicitly assumes that market participants react identically
throughout the year (and over each year) to that variable. This means
they assume:

the variable is no more important in winter.

market participants do not adapt.

These are unrealistic assumptions of economic behavior.
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Introduction

Further, natural gas uncertainty is likely not simply attributable to the
regression error term, but rather also due to changes in how market
participants link prices to storage and weather (the coefficients), and
the uncertainty in these parameter estimates.
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Introduction

In this analysis we will model natural gas price returns as a linear
function of gas storage and weather variables, and we will allow the
coefficients of this function to vary continuously over time (TVP
model).

TVP model will allow market participants to adapt their reactions
to information contained in variables, and also afford an estimate
of conditional heteroskedasticity due to both parameter
uncertainty and a standard error term.

We will use this to also estimate a time series of the proportion of
total volatility attributable to each independent variable.
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Preliminary Evidence

We first use a series of OLS regressions to investigate whether:

the sensitivity of natural gas prices to changes in storage and the
weather (HDD) is time-varying.

the proportion of natural gas volatility attributable to these
variables time-varying.

To do so we first calculate the average natural gas price return, storage
deviation, and HDD deviation for each week of the year. We then run
52 (one for each week) OLS regressions,
ngw,i = β0 + β1Storw,i + β2HDDw,i + ei where w denotes a particular
week of the year, and i ranges over the 14 years in our sample.
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Figure: Sensitivity of natural gas returns to deviations in storage and HDD. The sensitivities were
estimated as slope coefficients from linear regressions ngw,i = β0 + β1Storw,i + β2HDDw,i + ei where w
denotes a particular week of the year, and i ranges over the 14 years in our sample.
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Figure: Proportion of natural gas return volatility attributable to storage and HDD. The proportions
were estimated from linear regressions ngw,i = β0 + β1Storw,i + β2HDDw,i + ei where w denotes a
particular week of the year, and i ranges over the 14 years in our sample.
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Parameter Stability Tests

We use a test to detect departures from constancy in time-series
regression relationships proposed by Brown, Durban,and Evans (1975).
The specific test is referred to by the authors as the ‘homogeneity
test’1.

Null hypothesis of the test is that the regression parameters are
equal at each time point.

1found in the section: 2.5. Moving Regressions
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Parameter Stability Tests

The sample period is split into nonoverlapping intervals of arbitrary
length n, and the ‘between group over within groups’ ratio of mean
sum of squares is calculated as the test statistic.

Under H0 the test statistic is distributed as F (kp− k, T − kp)
where k is the number of regressors, p the number of intervals, and
T is the number of observations.

Applying this test to ngt = β0 + β1Stort + β2HDDt + et, for values of
n ranging from 20 to 50, we are able to reject the null at the 5% level
of significance for all n

Result

We reject the null, which is stable regression coefficients.
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Structural form of the parameters

Engle and Watson (1985) suggest a random walk in cases where market
participants adjust their estimate of the state only on the arrival of
new information.

In natural gas markets, however, participants will also likely
adjust parameter estimates based on season.
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Structural form of the parameters

To test whether the coefficients are random walks we will estimate
ngt = β0 + β1Stort + β2HDDt + et using OLS. We also estimate
separate equations for each independent variable. We then use that

one-half times the regression sum of squares of
ê2t
σ2
e

= γ0 + γ1t(x
2
t ) + µt

where x is the vector of independent variables, is distributed χ2(k)
under the null of stable coefficients.

The alternative hypothesis is that the OLS regression exhibits
heteroskedasticity consistent with random walk coefficients.
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Structural form of the parameters

Using this test we are able to reject the null for the HDD coefficient at
the 5% level. We do not reject the null for the storage coefficient
(Stor). Considering this with the results of the previous section implies
the Stor coefficient is time-varying though not in a random walk
fashion.

Jointly testing all regression parameters, we also do not reject the
null.
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TVP Model

Measurement equation:

ngt = β0,t + β1,tStor + β2,tHDD + et, et ∼ N(0, σ2e) (1)

and for coefficient n we let the transition equation take the form of a
random walk:

βn,t = βn,t−1 + ξn,t, ξt ∼ N(0, σ2ξn) (2)

Note ngt denotes log returns in natural gas futures prices, and Stor
and HDD represent deviation from normal storage, and heating degree
days respectively.
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Model Estimation

Estimation of the model is done using the Kalman Filter and
Prediction Error Decomposition. The likelihood function was
maximized using the optim function in the R (2014) programming
language.
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Model Results

Estimation of the model affords:

Time-varying parameters: βn,t|t−1 and βn,t|t

The conditional variance: Ht|t−1 = xt−1Pt|t−1x
′
t−1 + σ2e

where xt−1 is the vector of explanatory variables (Stor and
HDD), Pt|t−1 is the variance-covariance matrix of the time
varying regression coefficients (βt|t−1), and σ2e is the variance of
the disturbance term.
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Components of Volatility

To calculate the proportion of natural gas volatility attributable to a
particular variable (Stor or HDD) we:

zero out the variable in xt−1 and any row or column in Pt|t−1
which involves that variable.

We then recalculate Ht|t−1, which affords the conditional variance
of natural gas prices without that variable.

The difference between the full conditional variance and the
conditional variance without the variable, affords the conditional
variance attributable to that variable.
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Results: Diagnostic Tests

Serial Dependence:

We test the heteroscedasticity-adjusted one-period-ahead forecast

errors, H
− 1

2

t|t−1ηt|t−1, for serial dependence using the Box-Pierce and
Ljung-Box tests. We run tests for lags from 1 to 52 weeks. Both
tests do not reject the null of no serial dependence for all lags.
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Results: Diagnostic Tests

ARCH Effects:

we use both the Lagrange Multiplier test of Engel (1982) and the
Ljung-Box test on the squares of the heteroscedasticity-adjusted

one-period-ahead forecast errors

(
H
− 1

2

t|t−1ηt|t−1

)2

.

The tests disagree:

Ljung-Box test failing to reject the null of no ARCH effects
the Lagrange Multiplier rejecting the null

We therefore conclude there is evidence of ARCH effects.
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Results Summary

The model was estimated using varying initial parameters and the
maximum log-likelihood over the many estimations was 1650.

The standard deviation of the error term in the measurement
equation (σe) is 5.49%.

The standard deviations of the error terms in the transition
equations (σξn):

intercept: 0.0015
Stor: 0.4811
HDD: 0.0001
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Figure: Below are plots of the Kalman filtered estimated coefficients. The
plots are over the full sample period.
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Results: Coefficients

The storage coefficient appears to be a stationary series, and has a
mean of 0.08. The range of variation through the seasons is from
-2.40 to 1.99.

The weather coefficient shows some seasonal variation, however
the mean of this coefficient seems to vary with time (i.e.
nonstationary).

For the period 1999 to 2007, the mean was 0.0010. For the period
2008 to 2014 the mean dropped to 0.0002. This 80% drop is
evidence that market participants vary their reaction to underlying
variables over multi-year periods, as well as throughout the year.

Using the ADF test, the intercept and weather coefficients contain
a unit root, however a unit root is rejected in the storage
coefficient.
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Results: Forecast Uncertainty

The mean forecast uncertainty from the TVP model is 10.60%,
whereas the mean absolute value of natural gas returns is 5.31%. The
unconditional standard deviation of returns from the GARCH(1,1)
model is 8.45%.

This shows, on average, there is more forecast uncertainty in
natural gas returns than would be implied by the error term alone.
That is, parameter uncertainty plays an important role in natural
gas return volatility.
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Figure: Weekly volatility measures. Below are measures of weekly volatility in
natural gas returns, estimated over the full sample period.
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Results: Time-Varying Components of Volatility

Summer:

Storage accounts for 50% of volatility with approximately 25% of
the volatility coming from weather and the intercept term.

Winter:

The proportion of forecast volatility due to weather often becomes
the prime component of volatility (often accounting for 40% of the
total) and the portion attributable to storage drops to around
30%.

These results are consistent with common accounts of traders focusing
on storage amounts during the summer injection season, as this is an
indicator of whether there will be enough working gas in storage to
meet winter demand.
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Figure: Below are plots of total volatility (forecast uncertainty) with the
proportions of that volatility attributable to each variable (top frame), and
the proportion of total volatility attributable to each factor (bottom frame).
The plots are over the full sample period.
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Figure: Below are plots of total volatility (forecast uncertainty) with the
proportions of that volatility attributable to each variable (top frame), and
the proportion of total volatility attributable to each factor (bottom frame).
The plots are over a representative subsample period.
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Application: NG Trading

This analysis models how, in aggregate, market participants’
parameters linking storage and weather evolve over time. This can help
a market participants to understand their own adaptation process.

The filtering algorithm affords forecasts of next week’s coefficients,
and coefficient uncertainly, as well as next week’s natural gas
return, given this week’s data.
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Application: Hedge Ratios

Power producers to hedge input prices by buying natural gas futures,
and hedge demand risk by buying/selling weather derivatives (heating
and cooling degree days).

Say a company buys gas, and sells heating degree day futures. Let
hG and hH denote the hedge ratio for the gas and HDD futures
contracts respectively. To calculate the optimal hedge ratios the
company will seek to minimize the variance of the combined
position:

V ar((hG∆FG − ∆SG) + (∆SH − hH∆FH)) (3)
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Proposition 1

The optimal hedge ratios which solve this minimization problem are
(proof in the appendix):

h∗
G =

σ2
FH

(Cov(∆FG,∆SH )−Cov(∆FG,∆SG))+Cov(∆FG,∆FH )(Cov(∆FH,∆SG)−Cov(∆FH,∆SH ))

(Cov(∆FG,∆FH ))2−σ2
FG

σ2
FH

and

h∗
H =

σ2
FG

(Cov(∆FH,∆SG)−Cov(∆FH,∆SH ))+Cov(∆FG,∆FH )(Cov(∆FG,∆SH )−Cov(∆FG,∆SG))

(Cov(∆FG,∆FH ))2−σ2
FG

σ2
FH
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Application: Hedge Ratios

We can see the optimal hedge ratios are functions of the variances and
covariances of the changes in spot and futures prices.

To estimate the effect of the proportion of natural gas uncertainty
due to weather, we have estimated:

Cov(∆FGt ,∆SHt) = β0 + β1PropHDDt + µt

where Cov(∆FGt ,∆SHt) is estimated from time t− 2 to t+ 2 and
PropHDDt is the average proportion from t− 2 to t+ 2.
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Application: Hedge Ratios

The resulting estimate of the slope coefficient (β1) is 5.59 and is
significant at less than the 0.1% level.

The proportion of natural gas uncertainty from HDD explains
about 10% of the variation in Cov(∆FGt ,∆SHt).

The proportion of natural gas price uncertainty from HDD has a
strong positive effect on Cov(∆FGt ,∆SHt), and thereby affects the
hedge ratio.

This is evidence that the optimal hedge ratio will be affected over time
by the proportion of volatility from the weather.
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Conclusion

In this analysis we have modeled natural gas returns explicitly
allowing for market participants to learn over time, and to react
differently to present changes in economic variables.

we found the time series of the Kalman filtered estimates of the
Stor coefficient did not contain a unit root. This implies that we
can make inferences about future coefficient values.

We also found evidence that the weather (HDD) coefficient did
contain a unit root, and weather became a less important
determinant of natural gas returns in 2007.
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Conclusion

In an original application of the TVP model, we decomposed
conditional volatility into a time series of each contributing factor to
that volatility.

This showed that storage is the dominant component of natural
gas volatility throughout the year, with weather being the largest
contributing factor only during periods in the winter.

Lastly, we showed that results of this analysis have particular
applications to hedging and trading in natural gas markets.
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Questions/Comments?
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Appendix

Proof of Proposition 1: The variance of the combined position (V ) is:

V = V ar (hG∆FG − hH∆FH + ∆SH −∆SG) =

V ar (hG∆FG − hH∆FH ) + V ar (∆SH −∆SG) + 2Cov (hG∆FG − hH∆FH ,∆SH −∆SG) =

= h
2
Gσ

2
FG

+ h
2
Hσ

2
FH
− 2hGhHCov (∆FG∆FH ) + V ar (∆SH −∆SG) +

+2
(
hgCov(∆FG,∆SH )− hGCov(∆FG,∆SG)− hHCov(∆FH ,∆SH ) + hHCov(FH , SG)

)
Taking the partial derivatives of the variance of the combined position with respect to hG and hH and
setting them equal to zero gives:

∂V

∂hG
= hGσ

2
FG
− hHCov(∆FG,∆FH ) + Cov(∆FG,∆SH )− Cov(∆FG,∆SG) = 0

∂V

∂hH
= hHσ

2
FH
− hGCov(∆FG,∆FH ) + Cov(∆FH ,∆SG)− Cov(∆FH ,∆SH ) = 0

We then solve this system of equations for hG and hH . To do so write the system of equations as:

hGA− hHB +Q = 0

−hGB + hHI + R = 0

⇒ hH =
hGA +Q

B

⇒ hG =
hHI + R

B
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Plugging hH into hG and solving for hG:

hG =

(
hGA+Q

B

)
I + R

B
⇒ h

∗
G =

QI + RB

B2 − AI

Plugging hG back into hH and solving for hH :

hH =

(
QI+RB

B2−AI

)
A +Q

B
⇒ h

∗
H =

QB + RA

B2 − AI

Plugging back in for A, B, I, Q, and R affords the solution.
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